所有类


java.util
类 Random

java.lang.Object
  继承者 java.util.Random
所有已实现的接口:
Serializable
直接已知子类:
SecureRandom

public class Random
   
   
   
   
   
extends Object
implements Serializable

此类的实例用于生成伪随机数流。此类使用 48 位的种子,使用线性同余公式对其进行修改(请参阅 Donald Knuth 的《The Art of Computer Programming, Volume 2》,第 3.2.1 节)。

如果用相同的种子创建两个 Random 实例,则对每个实例进行相同的方法调用序列,它们将生成并返回相同的数字序列。为了保证属性的实现,为类 Random 指定了特定的算法。为了 Java 代码的完全可移植性,Java 实现必须让类 Random 使用此处所示的所有算法。但是允许 Random 类的子类使用其他算法,只要其符合所有方法的常规协定即可。

Random 类所实现的算法使用一个 protected 实用工具方法,每次调用它都可提供最多 32 个伪随机生成的位。

很多应用程序会发现 Math 类中的 random 方法更易于使用。

从以下版本开始:
JDK1.0
另请参见:
Math.random(), 序列化表格

构造方法摘要
Random()
          创建一个新的随机数生成器。
Random(long seed)
          使用单个 long 种子创建一个新随机数生成器: public Random(long seed) { setSeed(seed); } next 方法使用它来保存随机数生成器的状态。
 
方法摘要
protected  int next(int bits)
          生成下一个伪随机数。
 boolean nextBoolean()
          返回下一个伪随机数,它是从此随机数生成器的序列中取出的、均匀分布的 boolean 值。
 void nextBytes(byte[] bytes)
          生成随机字节并将其置于用户提供的字节数组中。
 double nextDouble()
          返回下一个伪随机数,它是从此随机数生成器的序列中取出的、在 0.01.0之间均匀分布的 double 值。
 float nextFloat()
          返回下一个伪随机数,它是从此随机数生成器的序列中取出的、在 0.01.0 之间均匀分布的 float 值。
 double nextGaussian()
          返回下一个伪随机数,它是从此随机数生成器的序列中取出的、呈高斯(“正常地”)分布的 double 值,其平均值是 0.0,标准偏差是 1.0
 int nextInt()
          返回下一个伪随机数,它是此随机数生成器的序列中均匀分布的 int 值。
 int nextInt(int n)
          返回一个伪随机数,它是从此随机数生成器的序列中取出的、在 0(包括)和指定值(不包括)之间均匀分布的 int值。
 long nextLong()
          返回下一个伪随机数,它是从此随机数生成器的序列中取出的、均匀分布的 long 值。
 void setSeed(long seed)
          使用单个 long 种子设置此随机数生成器的种子。
 
从类 java.lang.Object 继承的方法
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

构造方法详细信息

Random

public Random()
创建一个新的随机数生成器。此构造方法为随机数生成器的种子设置某个值,该值与此构造方法的所有其他调用所用的值完全不同。


Random

public Random(long seed)
使用单个 long 种子创建一个新随机数生成器:
 public Random(long seed) { setSeed(seed); }
next 方法使用它来保存随机数生成器的状态。

参数:
seed - 初始种子。
另请参见:
setSeed(long)
方法详细信息

setSeed

public void setSeed(long seed)
使用单个 long 种子设置此随机数生成器的种子。setSeed 的常规协定是它更改此随机数生成器对象的状态,使其状态好像是刚刚使用参数 seed 作为种子创建它的状态一样。Random 类按如下方式实现 setSeed 方法:
synchronized public void setSeed(long seed) {
       this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);
       haveNextNextGaussian = false;
 }
Random 类实现的 setSeed 恰好只使用 48 位的给定种子。但是,通常重写方法可能使用 long 参数的所有 64 位作为种子值。 注:尽管种子值是一个基本的 AtomicLong,但仍必须对此方法同步,确保 haveNextNextGaussian 的语义正确。

参数:
seed - 初始种子。

next

protected int next(int bits)
生成下一个伪随机数。当此数被所有其他方法使用时,子类应该重写此数。

next 的常规协定是它返回一个 int 值,并且如果参数位处于 132(包括)之间,那么返回值的多数低位都将(大致)是单独选择的位值,每个位值是 01 的机会(大致)相等。Random 类按如下方式实现 next 方法:

 synchronized protected int next(int bits) {
       seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
       return (int)(seed >>> (48 - bits));
 }
这是一个线性同余伪随机数生成器,由 D. H. Lehmer 定义,Donald E. Knuth 在《The Art of Computer Programming, Volume 2: Seminumerical Algorithms》的第 3.2.1 节中进行了描述。

参数:
bits - 随机位。
返回:
随机数生成器序列的下一个伪随机值。
从以下版本开始:
JDK1.1

nextBytes

public void nextBytes(byte[] bytes)
生成随机字节并将其置于用户提供的字节数组中。所生成的随机字节数等于该字节数组的长度。

参数:
bytes - 放入随机字节的非 null 字节数组。
从以下版本开始:
JDK1.1

nextInt

public int nextInt()
返回下一个伪随机数,它是此随机数生成器的序列中均匀分布的 int 值。nextInt 的常规协定是伪随机地生成并返回一个 int 值。所有 232 个可能 int 值的生成概率(大致)相同。Random 类按如下方式实现 nextInt 方法:
 public int nextInt() {  return next(32); }

返回:
下一个伪随机数,它是此随机数生成器的序列中均匀分布的 int 值。

nextInt

public int nextInt(int n)
返回一个伪随机数,它是从此随机数生成器的序列中取出的、在 0(包括)和指定值(不包括)之间均匀分布的 int值。nextInt 的常规协定是伪随机地生成并返回指定范围中的一个 int 值。所有 n 个可能 int 值的生成概率(大致)相同。Random 类按如下方式实现 nextInt(int n) 方法:
 public int nextInt(int n) {
     if (n<=0)
                throw new IllegalArgumentException("n must be positive");

     if ((n & -n) == n)  // i.e., n is a power of 2
         return (int)((n * (long)next(31)) >> 31);

     int bits, val;
     do {
         bits = next(31);
         val = bits % n;
     } while(bits - val + (n-1) < 0);
     return val;
 }
 

前面的描述中使用了不明确的词“大致”,只是因为 next 方法大致为一个单独选择位的公正来源。如果它是一个随机选择位的最佳来源,那么给出的算法应该从起始范围开始完全一致地选择 int 值。

但此算法稍微有些复杂。它拒绝那些会导致不均匀分布的值(由于 2^31 无法被 n 整除)。某个值被拒绝的概率取决于 n。最坏的情况是 n=2^30+1,拒绝的概率是 1/2,循环终止前的预计迭代次数是 2。

此算法特别对待 n 是 2 次幂的情况:它从基础的伪随机数生成器中返回正确的高位数。在不是特殊处理的情况中,将返回正确的 位数。众所周知,线性同余伪随机数生成器(比如此类所实现的)在其低位的值序列中有 short periods。因此,如果 n 是 2 次幂(幂值较小),则这种特殊情况会导致对此方法的后续调用会返回其长度大大增加的值序列。

参数:
n - 所返回随机数的范围。必须为正数。
返回:
一个伪随机数,处于 0(包括)和 n(包括)之间均匀分布的 int 值。
抛出:
IllegalArgumentException - n 不是正数。
从以下版本开始:
1.2

nextLong

public long nextLong()
返回下一个伪随机数,它是从此随机数生成器的序列中取出的、均匀分布的 long 值。nextLong 的常规协定是伪随机地生成并返回一个 long 值。所有 264 个可能 long 值的生成概率(大致)相同。Random 类按如下方式实现 nextLong 方法: public long nextLong() { return ((long)next(32) << 32) + next(32); }

返回:
下一个伪随机数,它是此随机数生成器的序列中均匀分布的 long 值。

微信小程序

微信扫一扫体验

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部