Interface Stream<T>
-
- Type Parameters:
-
T
- the type of the stream elements
- All Superinterfaces:
- AutoCloseable, BaseStream<T,Stream<T>>
public interface Stream<T> extends BaseStream<T,Stream<T>>
A sequence of elements supporting sequential and parallel aggregate operations. The following example illustrates an aggregate operation usingStream
andIntStream
:
In this example,int sum = widgets.stream() .filter(w -> w.getColor() == RED) .mapToInt(w -> w.getWeight()) .sum();
widgets
is aCollection<Widget>
. We create a stream ofWidget
objects viaCollection.stream()
, filter it to produce a stream containing only the red widgets, and then transform it into a stream ofint
values representing the weight of each red widget. Then this stream is summed to produce a total weight.In addition to
Stream
, which is a stream of object references, there are primitive specializations forIntStream
,LongStream
, andDoubleStream
, all of which are referred to as "streams" and conform to the characteristics and restrictions described here.To perform a computation, stream operations are composed into a stream pipeline. A stream pipeline consists of a source (which might be an array, a collection, a generator function, an I/O channel, etc), zero or more intermediate operations (which transform a stream into another stream, such as
filter(Predicate)
), and a terminal operation (which produces a result or side-effect, such ascount()
orforEach(Consumer)
). Streams are lazy; computation on the source data is only performed when the terminal operation is initiated, and source elements are consumed only as needed.Collections and streams, while bearing some superficial similarities, have different goals. Collections are primarily concerned with the efficient management of, and access to, their elements. By contrast, streams do not provide a means to directly access or manipulate their elements, and are instead concerned with declaratively describing their source and the computational operations which will be performed in aggregate on that source. However, if the provided stream operations do not offer the desired functionality, the
BaseStream.iterator()
andBaseStream.spliterator()
operations can be used to perform a controlled traversal.A stream pipeline, like the "widgets" example above, can be viewed as a query on the stream source. Unless the source was explicitly designed for concurrent modification (such as a
ConcurrentHashMap
), unpredictable or erroneous behavior may result from modifying the stream source while it is being queried.Most stream operations accept parameters that describe user-specified behavior, such as the lambda expression
w -> w.getWeight()
passed tomapToInt
in the example above. To preserve correct behavior, these behavioral parameters:- must be non-interfering (they do not modify the stream source); and
- in most cases must be stateless (their result should not depend on any state that might change during execution of the stream pipeline).
Such parameters are always instances of a functional interface such as
Function
, and are often lambda expressions or method references. Unless otherwise specified these parameters must be non-null.A stream should be operated on (invoking an intermediate or terminal stream operation) only once. This rules out, for example, "forked" streams, where the same source feeds two or more pipelines, or multiple traversals of the same stream. A stream implementation may throw
IllegalStateException
if it detects that the stream is being reused. However, since some stream operations may return their receiver rather than a new stream object, it may not be possible to detect reuse in all cases.Streams have a
BaseStream.close()
method and implementAutoCloseable
, but nearly all stream instances do not actually need to be closed after use. Generally, only streams whose source is an IO channel (such as those returned byFiles.lines(Path, Charset)
) will require closing. Most streams are backed by collections, arrays, or generating functions, which require no special resource management. (If a stream does require closing, it can be declared as a resource in atry
-with-resources statement.)Stream pipelines may execute either sequentially or in parallel. This execution mode is a property of the stream. Streams are created with an initial choice of sequential or parallel execution. (For example,
Collection.stream()
creates a sequential stream, andCollection.parallelStream()
creates a parallel one.) This choice of execution mode may be modified by theBaseStream.sequential()
orBaseStream.parallel()
methods, and may be queried with theBaseStream.isParallel()
method.- Since:
- 1.8
- See Also:
-
IntStream
,LongStream
,DoubleStream
, java.util.stream
-
-
Nested Class Summary
Nested Classes Modifier and Type Interface and Description static interface
Stream.Builder<T>
A mutable builder for aStream
.
-
Method Summary
All Methods Static Methods Instance Methods Abstract Methods Default Methods Modifier and Type Method and Description boolean
allMatch(Predicate<? super T> predicate)
Returns whether all elements of this stream match the provided predicate.boolean
anyMatch(Predicate<? super T> predicate)
Returns whether any elements of this stream match the provided predicate.static <T> Stream.Builder<T>
builder()
Returns a builder for aStream
.<R,A> R
collect(Collector<? super T,A,R> collector)
Performs a mutable reduction operation on the elements of this stream using aCollector
.<R> R
collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, BiConsumer<R,R> combiner)
Performs a mutable reduction operation on the elements of this stream.static <T> Stream<T>
concat(Stream<? extends T> a, Stream<? extends T> b)
Creates a lazily concatenated stream whose elements are all the elements of the first stream followed by all the elements of the second stream.long
count()
Returns the count of elements in this stream.Stream<T>
distinct()
Returns a stream consisting of the distinct elements (according toObject.equals(Object)
) of this stream.static <T> Stream<T>
empty()
Returns an empty sequentialStream
.Stream<T>
filter(Predicate<? super T> predicate)
Returns a stream consisting of the elements of this stream that match the given predicate.Optional<T>
findAny()
Returns anOptional
describing some element of the stream, or an emptyOptional
if the stream is empty.Optional<T>
findFirst()
Returns anOptional
describing the first element of this stream, or an emptyOptional
if the stream is empty.<R> Stream<R>
flatMap(Function<? super T,? extends Stream<? extends R>> mapper)
Returns a stream consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping function to each element.DoubleStream
flatMapToDouble(Function<? super T,? extends DoubleStream> mapper)
Returns anDoubleStream
consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping function to each element.IntStream
flatMapToInt(Function<? super T,? extends IntStream> mapper)
Returns anIntStream
consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping function to each element.LongStream
flatMapToLong(Function<? super T,? extends LongStream> mapper)
Returns anLongStream
consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping function to each element.void
forEach(Consumer<? super T> action)
Performs an action for each element of this stream.void
forEachOrdered(Consumer<? super T> action)
Performs an action for each element of this stream, in the encounter order of the stream if the stream has a defined encounter order.static <T> Stream<T>
generate(Supplier<T> s)
Returns an infinite sequential unordered stream where each element is generated by the providedSupplier
.static <T> Stream<T>
iterate(T seed, UnaryOperator<T> f)
Returns an infinite sequential orderedStream
produced by iterative application of a functionf
to an initial elementseed
, producing aStream
consisting ofseed
,f(seed)
,f(f(seed))
, etc.Stream<T>
limit(long maxSize)
Returns a stream consisting of the elements of this stream, truncated to be no longer thanmaxSize
in length.<R> Stream<R>
map(Function<? super T,? extends R> mapper)
Returns a stream consisting of the results of applying the given function to the elements of this stream.DoubleStream
mapToDouble(ToDoubleFunction<? super T> mapper)
Returns aDoubleStream
consisting of the results of applying the given function to the elements of this stream.IntStream
mapToInt(ToIntFunction<? super T> mapper)
Returns anIntStream
consisting of the results of applying the given function to the elements of this stream.LongStream
mapToLong(ToLongFunction<? super T> mapper)
Returns aLongStream
consisting of the results of applying the given function to the elements of this stream.Optional<T>
max(Comparator<? super T> comparator)
Returns the maximum element of this stream according to the providedComparator
.Optional<T>
min(Comparator<? super T> comparator)
Returns the minimum element of this stream according to the providedComparator
.boolean
noneMatch(Predicate<? super T> predicate)
Returns whether no elements of this stream match the provided predicate.static <T> Stream<T>
of(T... values)
Returns a sequential ordered stream whose elements are the specified values.static <T> Stream<T>
of(T t)
Returns a sequentialStream
containing a single element.Stream<T>
peek(Consumer<? super T> action)
Returns a stream consisting of the elements of this stream, additionally performing the provided action on each element as elements are consumed from the resulting stream.Optional<T>
reduce(BinaryOperator<T> accumulator)
Performs a reduction on the elements of this stream, using an associative accumulation function, and returns anOptional
describing the reduced value, if any.T
reduce(T identity, BinaryOperator<T> accumulator)
Performs a reduction on the elements of this stream, using the provided identity value and an associative accumulation function, and returns the reduced value.<U> U
reduce(U identity, BiFunction<U,? super T,U> accumulator, BinaryOperator<U> combiner)
Performs a reduction on the elements of this stream, using the provided identity, accumulation and combining functions.Stream<T>
skip(long n)
Returns a stream consisting of the remaining elements of this stream after discarding the firstn
elements of the stream.Stream<T>
sorted()
Returns a stream consisting of the elements of this stream, sorted according to natural order.Stream<T>
sorted(Comparator<? super T> comparator)
Returns a stream consisting of the elements of this stream, sorted according to the providedComparator
.Object[]
toArray()
Returns an array containing the elements of this stream.<A> A[]
toArray(IntFunction<A[]> generator)
Returns an array containing the elements of this stream, using the providedgenerator
function to allocate the returned array, as well as any additional arrays that might be required for a partitioned execution or for resizing.-
Methods inherited from interface java.util.stream.BaseStream
close, isParallel, iterator, onClose, parallel, sequential, spliterator, unordered
-
-
-
-
Method Detail
filter
Stream<T> filter(Predicate<? super T> predicate)
Returns a stream consisting of the elements of this stream that match the given predicate.This is an intermediate operation.
- Parameters:
-
predicate
- a non-interfering, stateless predicate to apply to each element to determine if it should be included - Returns:
- the new stream
map
<R> Stream<R> map(Function<? super T,? extends R> mapper)
Returns a stream consisting of the results of applying the given function to the elements of this stream.This is an intermediate operation.
- Type Parameters:
-
R
- The element type of the new stream - Parameters:
-
mapper
- a non-interfering, stateless function to apply to each element - Returns:
- the new stream
mapToInt
IntStream mapToInt(ToIntFunction<? super T> mapper)
Returns anIntStream
consisting of the results of applying the given function to the elements of this stream.This is an intermediate operation.
- Parameters:
-
mapper
- a non-interfering, stateless function to apply to each element - Returns:
- the new stream
mapToLong
LongStream mapToLong(ToLongFunction<? super T> mapper)
Returns aLongStream
consisting of the results of applying the given function to the elements of this stream.This is an intermediate operation.
- Parameters:
-
mapper
- a non-interfering, stateless function to apply to each element - Returns:
- the new stream
mapToDouble
DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper)
Returns aDoubleStream
consisting of the results of applying the given function to the elements of this stream.This is an intermediate operation.
- Parameters:
-
mapper
- a non-interfering, stateless function to apply to each element - Returns:
- the new stream
flatMap
<R> Stream<R> flatMap(Function<? super T,? extends Stream<? extends R>> mapper)
Returns a stream consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping function to each element. Each mapped stream isclosed
after its contents have been placed into this stream. (If a mapped stream isnull
an empty stream is used, instead.)This is an intermediate operation.
- API Note:
-
The
flatMap()
operation has the effect of applying a one-to-many transformation to the elements of the stream, and then flattening the resulting elements into a new stream.Examples.
If
orders
is a stream of purchase orders, and each purchase order contains a collection of line items, then the following produces a stream containing all the line items in all the orders:orders.flatMap(order -> order.getLineItems().stream())...
If
path
is the path to a file, then the following produces a stream of thewords
contained in that file:
TheStream<String> lines = Files.lines(path, StandardCharsets.UTF_8); Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +")));
mapper
function passed toflatMap
splits a line, using a simple regular expression, into an array of words, and then creates a stream of words from that array. - Type Parameters:
-
R
- The element type of the new stream - Parameters:
-
mapper
- a non-interfering, stateless function to apply to each element which produces a stream of new values - Returns:
- the new stream
flatMapToInt
IntStream flatMapToInt(Function<? super T,? extends IntStream> mapper)
Returns anIntStream
consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping function to each element. Each mapped stream isclosed
after its contents have been placed into this stream. (If a mapped stream isnull
an empty stream is used, instead.)This is an intermediate operation.
- Parameters:
-
mapper
- a non-interfering, stateless function to apply to each element which produces a stream of new values - Returns:
- the new stream
- See Also:
-
flatMap(Function)
flatMapToLong
LongStream flatMapToLong(Function<? super T,? extends LongStream> mapper)
Returns anLongStream
consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping function to each element. Each mapped stream isclosed
after its contents have been placed into this stream. (If a mapped stream isnull
an empty stream is used, instead.)This is an intermediate operation.
- Parameters:
-
mapper
- a non-interfering, stateless function to apply to each element which produces a stream of new values - Returns:
- the new stream
- See Also:
-
flatMap(Function)
flatMapToDouble
DoubleStream flatMapToDouble(Function<? super T,? extends DoubleStream> mapper)
Returns anDoubleStream
consisting of the results of replacing each element of this stream with the contents of a mapped stream produced by applying the provided mapping function to each element. Each mapped stream isclosed
after its contents have placed been into this stream. (If a mapped stream isnull
an empty stream is used, instead.)This is an intermediate operation.
- Parameters:
-
mapper
- a non-interfering, stateless function to apply to each element which produces a stream of new values - Returns:
- the new stream
- See Also:
-
flatMap(Function)
distinct
Stream<T> distinct()
Returns a stream consisting of the distinct elements (according toObject.equals(Object)
) of this stream.For ordered streams, the selection of distinct elements is stable (for duplicated elements, the element appearing first in the encounter order is preserved.) For unordered streams, no stability guarantees are made.
This is a stateful intermediate operation.
- API Note:
-
Preserving stability for
distinct()
in parallel pipelines is relatively expensive (requires that the operation act as a full barrier, with substantial buffering overhead), and stability is often not needed. Using an unordered stream source (such asgenerate(Supplier)
) or removing the ordering constraint withBaseStream.unordered()
may result in significantly more efficient execution fordistinct()
in parallel pipelines, if the semantics of your situation permit. If consistency with encounter order is required, and you are experiencing poor performance or memory utilization withdistinct()
in parallel pipelines, switching to sequential execution withBaseStream.sequential()
may improve performance. - Returns:
- the new stream
sorted
Stream<T> sorted()
Returns a stream consisting of the elements of this stream, sorted according to natural order. If the elements of this stream are notComparable
, ajava.lang.ClassCastException
may be thrown when the terminal operation is executed.For ordered streams, the sort is stable. For unordered streams, no stability guarantees are made.
This is a stateful intermediate operation.
- Returns:
- the new stream
sorted
Stream<T> sorted(Comparator<? super T> comparator)
Returns a stream consisting of the elements of this stream, sorted according to the providedComparator
.For ordered streams, the sort is stable. For unordered streams, no stability guarantees are made.
This is a stateful intermediate operation.
- Parameters:
-
comparator
- a non-interfering, statelessComparator
to be used to compare stream elements - Returns:
- the new stream
peek
Stream<T> peek(Consumer<? super T> action)
Returns a stream consisting of the elements of this stream, additionally performing the provided action on each element as elements are consumed from the resulting stream.This is an intermediate operation.
For parallel stream pipelines, the action may be called at whatever time and in whatever thread the element is made available by the upstream operation. If the action modifies shared state, it is responsible for providing the required synchronization.
- API Note:
-
This method exists mainly to support debugging, where you want to see the elements as they flow past a certain point in a pipeline:
Stream.of("one", "two", "three", "four") .filter(e -> e.length() > 3) .peek(e -> System.out.println("Filtered value: " + e)) .map(String::toUpperCase) .peek(e -> System.out.println("Mapped value: " + e)) .collect(Collectors.toList());
- Parameters:
-
action
- a non-interfering action to perform on the elements as they are consumed from the stream - Returns:
- the new stream
limit
Stream<T> limit(long maxSize)
Returns a stream consisting of the elements of this stream, truncated to be no longer thanmaxSize
in length.- API Note:
-
While
limit()
is generally a cheap operation on sequential stream pipelines, it can be quite expensive on ordered parallel pipelines, especially for large values ofmaxSize
, sincelimit(n)
is constrained to return not just any n elements, but the first n elements in the encounter order. Using an unordered stream source (such asgenerate(Supplier)
) or removing the ordering constraint withBaseStream.unordered()
may result in significant speedups oflimit()
in parallel pipelines, if the semantics of your situation permit. If consistency with encounter order is required, and you are experiencing poor performance or memory utilization withlimit()
in parallel pipelines, switching to sequential execution withBaseStream.sequential()
may improve performance. - Parameters:
-
maxSize
- the number of elements the stream should be limited to - Returns:
- the new stream
- Throws:
-
IllegalArgumentException
- ifmaxSize
is negative
skip
Stream<T> skip(long n)
Returns a stream consisting of the remaining elements of this stream after discarding the firstn
elements of the stream. If this stream contains fewer thann
elements then an empty stream will be returned.This is a stateful intermediate operation.
- API Note:
-
While
skip()
is generally a cheap operation on sequential stream pipelines, it can be quite expensive on ordered parallel pipelines, especially for large values ofn
, sinceskip(n)
is constrained to skip not just any n elements, but the first n elements in the encounter order. Using an unordered stream source (such asgenerate(Supplier)
) or removing the ordering constraint withBaseStream.unordered()
may result in significant speedups ofskip()
in parallel pipelines, if the semantics of your situation permit. If consistency with encounter order is required, and you are experiencing poor performance or memory utilization withskip()
in parallel pipelines, switching to sequential execution withBaseStream.sequential()
may improve performance. - Parameters:
-
n
- the number of leading elements to skip - Returns:
- the new stream
- Throws:
-
IllegalArgumentException
- ifn
is negative
forEach
void forEach(Consumer<? super T> action)
Performs an action for each element of this stream.This is a terminal operation.
The behavior of this operation is explicitly nondeterministic. For parallel stream pipelines, this operation does not guarantee to respect the encounter order of the stream, as doing so would sacrifice the benefit of parallelism. For any given element, the action may be performed at whatever time and in whatever thread the library chooses. If the action accesses shared state, it is responsible for providing the required synchronization.
- Parameters:
-
action
- a non-interfering action to perform on the elements
forEachOrdered
void forEachOrdered(Consumer<? super T> action)
Performs an action for each element of this stream, in the encounter order of the stream if the stream has a defined encounter order.This is a terminal operation.
This operation processes the elements one at a time, in encounter order if one exists. Performing the action for one element happens-before performing the action for subsequent elements, but for any given element, the action may be performed in whatever thread the library chooses.
- Parameters:
-
action
- a non-interfering action to perform on the elements - See Also:
-
forEach(Consumer)
toArray
Object[] toArray()
Returns an array containing the elements of this stream.This is a terminal operation.
- Returns:
- an array containing the elements of this stream
toArray
<A> A[] toArray(IntFunction<A[]> generator)
Returns an array containing the elements of this stream, using the providedgenerator
function to allocate the returned array, as well as any additional arrays that might be required for a partitioned execution or for resizing.This is a terminal operation.
- API Note:
-
The generator function takes an integer, which is the size of the desired array, and produces an array of the desired size. This can be concisely expressed with an array constructor reference:
Person[] men = people.stream() .filter(p -> p.getGender() == MALE) .toArray(Person[]::new);
- Type Parameters:
-
A
- the element type of the resulting array - Parameters:
-
generator
- a function which produces a new array of the desired type and the provided length - Returns:
- an array containing the elements in this stream
- Throws:
-
ArrayStoreException
- if the runtime type of the array returned from the array generator is not a supertype of the runtime type of every element in this stream
reduce
T reduce(T identity, BinaryOperator<T> accumulator)
Performs a reduction on the elements of this stream, using the provided identity value and an associative accumulation function, and returns the reduced value. This is equivalent to:
but is not constrained to execute sequentially.T result = identity; for (T element : this stream) result = accumulator.apply(result, element) return result;
The
identity
value must be an identity for the accumulator function. This means that for allt
,accumulator.apply(identity, t)
is equal tot
. Theaccumulator
function must be an associative function.This is a terminal operation.
- API Note:
-
Sum, min, max, average, and string concatenation are all special cases of reduction. Summing a stream of numbers can be expressed as:
or:Integer sum = integers.reduce(0, (a, b) -> a+b);
Integer sum = integers.reduce(0, Integer::sum);
While this may seem a more roundabout way to perform an aggregation compared to simply mutating a running total in a loop, reduction operations parallelize more gracefully, without needing additional synchronization and with greatly reduced risk of data races.
- Parameters:
-
identity
- the identity value for the accumulating function -
accumulator
- an associative, non-interfering, stateless function for combining two values - Returns:
- the result of the reduction
reduce
Optional<T> reduce(BinaryOperator<T> accumulator)
Performs a reduction on the elements of this stream, using an associative accumulation function, and returns anOptional
describing the reduced value, if any. This is equivalent to:
but is not constrained to execute sequentially.boolean foundAny = false; T result = null; for (T element : this stream) { if (!foundAny) { foundAny = true; result = element; } else result = accumulator.apply(result, element); } return foundAny ? Optional.of(result) : Optional.empty();
The
accumulator
function must be an associative function.This is a terminal operation.
- Parameters:
-
accumulator
- an associative, non-interfering, stateless function for combining two values - Returns:
-
an
Optional
describing the result of the reduction - Throws:
-
NullPointerException
- if the result of the reduction is null - See Also:
-
reduce(Object, BinaryOperator)
,min(Comparator)
,max(Comparator)
reduce
<U> U reduce(U identity, BiFunction<U,? super T,U> accumulator, BinaryOperator<U> combiner)
Performs a reduction on the elements of this stream, using the provided identity, accumulation and combining functions. This is equivalent to:
but is not constrained to execute sequentially.U result = identity; for (T element : this stream) result = accumulator.apply(result, element) return result;
The
identity
value must be an identity for the combiner function. This means that for allu
,combiner(identity, u)
is equal tou
. Additionally, thecombiner
function must be compatible with theaccumulator
function; for allu
andt
, the following must hold:combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)
This is a terminal operation.
- API Note:
-
Many reductions using this form can be represented more simply by an explicit combination of
map
andreduce
operations. Theaccumulator
function acts as a fused mapper and accumulator, which can sometimes be more efficient than separate mapping and reduction, such as when knowing the previously reduced value allows you to avoid some computation. - Type Parameters:
-
U
- The type of the result - Parameters:
-
identity
- the identity value for the combiner function -
accumulator
- an associative, non-interfering, stateless function for incorporating an additional element into a result -
combiner
- an associative, non-interfering, stateless function for combining two values, which must be compatible with the accumulator function - Returns:
- the result of the reduction
- See Also:
-
reduce(BinaryOperator)
,reduce(Object, BinaryOperator)
collect
<R> R collect(Supplier<R> supplier, BiConsumer<R,? super T> accumulator, BiConsumer<R,R> combiner)
Performs a mutable reduction operation on the elements of this stream. A mutable reduction is one in which the reduced value is a mutable result container, such as anArrayList
, and elements are incorporated by updating the state of the result rather than by replacing the result. This produces a result equivalent to:R result = supplier.get(); for (T element : this stream) accumulator.accept(result, element); return result;
Like
reduce(Object, BinaryOperator)
,collect
operations can be parallelized without requiring additional synchronization.This is a terminal operation.
- API Note:
-
There are many existing classes in the JDK whose signatures are well-suited for use with method references as arguments to
collect()
. For example, the following will accumulate strings into anArrayList
:List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add, ArrayList::addAll);
The following will take a stream of strings and concatenates them into a single string:
String concat = stringStream.collect(StringBuilder::new, StringBuilder::append, StringBuilder::append) .toString();
- Type Parameters:
-
R
- type of the result - Parameters:
-
supplier
- a function that creates a new result container. For a parallel execution, this function may be called multiple times and must return a fresh value each time. -
accumulator
- an associative, non-interfering, stateless function for incorporating an additional element into a result -
combiner
- an associative, non-interfering, stateless function for combining two values, which must be compatible with the accumulator function - Returns:
- the result of the reduction
collect
<R,A> R collect(Collector<? super T,A,R> collector)
Performs a mutable reduction operation on the elements of this stream using aCollector
. ACollector
encapsulates the functions used as arguments tocollect(Supplier, BiConsumer, BiConsumer)
, allowing for reuse of collection strategies and composition of collect operations such as multiple-level grouping or partitioning.If the stream is parallel, and the
Collector
isconcurrent
, and either the stream is unordered or the collector isunordered
, then a concurrent reduction will be performed (seeCollector
for details on concurrent reduction.)This is a terminal operation.
When executed in parallel, multiple intermediate results may be instantiated, populated, and merged so as to maintain isolation of mutable data structures. Therefore, even when executed in parallel with non-thread-safe data structures (such as
ArrayList
), no additional synchronization is needed for a parallel reduction.- API Note:
-
The following will accumulate strings into an ArrayList:
List<String> asList = stringStream.collect(Collectors.toList());
The following will classify
Person
objects by city:Map<String, List<Person>> peopleByCity = personStream.collect(Collectors.groupingBy(Person::getCity));
The following will classify
Person
objects by state and city, cascading twoCollector
s together:Map<String, Map<String, List<Person>>> peopleByStateAndCity = personStream.collect(Collectors.groupingBy(Person::getState, Collectors.groupingBy(Person::getCity)));
- Type Parameters:
-
R
- the type of the result -
A
- the intermediate accumulation type of theCollector
- Parameters:
-
collector
- theCollector
describing the reduction - Returns:
- the result of the reduction
- See Also:
-
collect(Supplier, BiConsumer, BiConsumer)
,Collectors
min
Optional<T> min(Comparator<? super T> comparator)
Returns the minimum element of this stream according to the providedComparator
. This is a special case of a reduction.This is a terminal operation.
- Parameters:
-
comparator
- a non-interfering, statelessComparator
to compare elements of this stream - Returns:
-
an
Optional
describing the minimum element of this stream, or an emptyOptional
if the stream is empty - Throws:
-
NullPointerException
- if the minimum element is null
max
Optional<T> max(Comparator<? super T> comparator)
Returns the maximum element of this stream according to the providedComparator
. This is a special case of a reduction.This is a terminal operation.
- Parameters:
-
comparator
- a non-interfering, statelessComparator
to compare elements of this stream - Returns:
-
an
Optional
describing the maximum element of this stream, or an emptyOptional
if the stream is empty - Throws:
-
NullPointerException
- if the maximum element is null
count
long count()
Returns the count of elements in this stream. This is a special case of a reduction and is equivalent to:return mapToLong(e -> 1L).sum();
This is a terminal operation.
- Returns:
- the count of elements in this stream
anyMatch
boolean anyMatch(Predicate<? super T> predicate)
Returns whether any elements of this stream match the provided predicate. May not evaluate the predicate on all elements if not necessary for determining the result. If the stream is empty thenfalse
is returned and the predicate is not evaluated.This is a short-circuiting terminal operation.
- API Note:
- This method evaluates the existential quantification of the predicate over the elements of the stream (for some x P(x)).
- Parameters:
-
predicate
- a non-interfering, stateless predicate to apply to elements of this stream - Returns:
-
true
if any elements of the stream match the provided predicate, otherwisefalse
allMatch
boolean allMatch(Predicate<? super T> predicate)
Returns whether all elements of this stream match the provided predicate. May not evaluate the predicate on all elements if not necessary for determining the result. If the stream is empty thentrue
is returned and the predicate is not evaluated.This is a short-circuiting terminal operation.
- API Note:
-
This method evaluates the universal quantification of the predicate over the elements of the stream (for all x P(x)). If the stream is empty, the quantification is said to be vacuously satisfied and is always
true
(regardless of P(x)). - Parameters:
-
predicate
- a non-interfering, stateless predicate to apply to elements of this stream - Returns:
-
true
if either all elements of the stream match the provided predicate or the stream is empty, otherwisefalse
noneMatch
boolean noneMatch(Predicate<? super T> predicate)
Returns whether no elements of this stream match the provided predicate. May not evaluate the predicate on all elements if not necessary for determining the result. If the stream is empty thentrue
is returned and the predicate is not evaluated.This is a short-circuiting terminal operation.
- API Note:
-
This method evaluates the universal quantification of the negated predicate over the elements of the stream (for all x ~P(x)). If the stream is empty, the quantification is said to be vacuously satisfied and is always
true
, regardless of P(x). - Parameters:
-
predicate
- a non-interfering, stateless predicate to apply to elements of this stream - Returns:
-
true
if either no elements of the stream match the provided predicate or the stream is empty, otherwisefalse
findFirst
Optional<T> findFirst()
Returns anOptional
describing the first element of this stream, or an emptyOptional
if the stream is empty. If the stream has no encounter order, then any element may be returned.This is a short-circuiting terminal operation.
- Returns:
-
an
Optional
describing the first element of this stream, or an emptyOptional
if the stream is empty - Throws:
-
NullPointerException
- if the element selected is null
findAny
Optional<T> findAny()
Returns anOptional
describing some element of the stream, or an emptyOptional
if the stream is empty.This is a short-circuiting terminal operation.
The behavior of this operation is explicitly nondeterministic; it is free to select any element in the stream. This is to allow for maximal performance in parallel operations; the cost is that multiple invocations on the same source may not return the same result. (If a stable result is desired, use
findFirst()
instead.)- Returns:
-
an
Optional
describing some element of this stream, or an emptyOptional
if the stream is empty - Throws:
-
NullPointerException
- if the element selected is null - See Also:
-
findFirst()
builder
static <T> Stream.Builder<T> builder()
Returns a builder for aStream
.- Type Parameters:
-
T
- type of elements - Returns:
- a stream builder
empty
static <T> Stream<T> empty()
Returns an empty sequentialStream
.- Type Parameters:
-
T
- the type of stream elements - Returns:
- an empty sequential stream
of
static <T> Stream<T> of(T t)
Returns a sequentialStream
containing a single element.- Type Parameters:
-
T
- the type of stream elements - Parameters:
-
t
- the single element - Returns:
- a singleton sequential stream
of
@SafeVarargs static <T> Stream<T> of(T... values)
Returns a sequential ordered stream whose elements are the specified values.- Type Parameters:
-
T
- the type of stream elements - Parameters:
-
values
- the elements of the new stream - Returns:
- the new stream
iterate
static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)
Returns an infinite sequential orderedStream
produced by iterative application of a functionf
to an initial elementseed
, producing aStream
consisting ofseed
,f(seed)
,f(f(seed))
, etc.The first element (position
0
) in theStream
will be the providedseed
. Forn > 0
, the element at positionn
, will be the result of applying the functionf
to the element at positionn - 1
.- Type Parameters:
-
T
- the type of stream elements - Parameters:
-
seed
- the initial element -
f
- a function to be applied to the previous element to produce a new element - Returns:
-
a new sequential
Stream
generate
static <T> Stream<T> generate(Supplier<T> s)
Returns an infinite sequential unordered stream where each element is generated by the providedSupplier
. This is suitable for generating constant streams, streams of random elements, etc.- Type Parameters:
-
T
- the type of stream elements - Parameters:
-
s
- theSupplier
of generated elements - Returns:
-
a new infinite sequential unordered
Stream
concat
static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)
Creates a lazily concatenated stream whose elements are all the elements of the first stream followed by all the elements of the second stream. The resulting stream is ordered if both of the input streams are ordered, and parallel if either of the input streams is parallel. When the resulting stream is closed, the close handlers for both input streams are invoked.- Implementation Note:
-
Use caution when constructing streams from repeated concatenation. Accessing an element of a deeply concatenated stream can result in deep call chains, or even
StackOverflowException
. - Type Parameters:
-
T
- The type of stream elements - Parameters:
-
a
- the first stream -
b
- the second stream - Returns:
- the concatenation of the two input streams
-
Submit a bug or feature
For further API reference and developer documentation, see Java SE Documentation. That documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and working code examples.
Copyright © 1993, 2022, Oracle and/or its affiliates. All rights reserved. Use is subject to license terms. Also see the documentation redistribution policy.