compact1, compact2, compact3
java.security.spec
Class RSAPrivateCrtKeySpec
- java.lang.Object
-
- java.security.spec.RSAPrivateKeySpec
-
- java.security.spec.RSAPrivateCrtKeySpec
-
- All Implemented Interfaces:
- KeySpec
public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec
This class specifies an RSA private key, as defined in the PKCS#1 v2.2 standard, using the Chinese Remainder Theorem (CRT) information values for efficiency.- See Also:
-
Key
,KeyFactory
,KeySpec
,PKCS8EncodedKeySpec
,RSAPrivateKeySpec
,RSAPublicKeySpec
-
-
Constructor Summary
Constructors Constructor and Description RSAPrivateCrtKeySpec(BigInteger modulus, BigInteger publicExponent, BigInteger privateExponent, BigInteger primeP, BigInteger primeQ, BigInteger primeExponentP, BigInteger primeExponentQ, BigInteger crtCoefficient)
Creates a newRSAPrivateCrtKeySpec
.RSAPrivateCrtKeySpec(BigInteger modulus, BigInteger publicExponent, BigInteger privateExponent, BigInteger primeP, BigInteger primeQ, BigInteger primeExponentP, BigInteger primeExponentQ, BigInteger crtCoefficient, AlgorithmParameterSpec keyParams)
Creates a newRSAPrivateCrtKeySpec
with additional key parameters.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method and Description BigInteger
getCrtCoefficient()
Returns the crtCoefficient.BigInteger
getPrimeExponentP()
Returns the primeExponentP.BigInteger
getPrimeExponentQ()
Returns the primeExponentQ.BigInteger
getPrimeP()
Returns the primeP.BigInteger
getPrimeQ()
Returns the primeQ.BigInteger
getPublicExponent()
Returns the public exponent.-
Methods inherited from class java.security.spec.RSAPrivateKeySpec
getModulus, getParams, getPrivateExponent
-
-
-
-
Constructor Detail
RSAPrivateCrtKeySpec
public RSAPrivateCrtKeySpec(BigInteger modulus, BigInteger publicExponent, BigInteger privateExponent, BigInteger primeP, BigInteger primeQ, BigInteger primeExponentP, BigInteger primeExponentQ, BigInteger crtCoefficient)
Creates a newRSAPrivateCrtKeySpec
.- Parameters:
-
modulus
- the modulus n -
publicExponent
- the public exponent e -
privateExponent
- the private exponent d -
primeP
- the prime factor p of n -
primeQ
- the prime factor q of n -
primeExponentP
- this is d mod (p-1) -
primeExponentQ
- this is d mod (q-1) -
crtCoefficient
- the Chinese Remainder Theorem coefficient q-1 mod p
RSAPrivateCrtKeySpec
public RSAPrivateCrtKeySpec(BigInteger modulus, BigInteger publicExponent, BigInteger privateExponent, BigInteger primeP, BigInteger primeQ, BigInteger primeExponentP, BigInteger primeExponentQ, BigInteger crtCoefficient, AlgorithmParameterSpec keyParams)
Creates a newRSAPrivateCrtKeySpec
with additional key parameters.- API Note:
- This method is defined in Java SE 8 Maintenance Release 3.
- Parameters:
-
modulus
- the modulus n -
publicExponent
- the public exponent e -
privateExponent
- the private exponent d -
primeP
- the prime factor p of n -
primeQ
- the prime factor q of n -
primeExponentP
- this is d mod (p-1) -
primeExponentQ
- this is d mod (q-1) -
crtCoefficient
- the Chinese Remainder Theorem coefficient q-1 mod p -
keyParams
- the parameters associated with key - Since:
- 8
-
Method Detail
getPublicExponent
public BigInteger getPublicExponent()
Returns the public exponent.- Returns:
- the public exponent
getPrimeP
public BigInteger getPrimeP()
Returns the primeP.- Returns:
- the primeP
getPrimeQ
public BigInteger getPrimeQ()
Returns the primeQ.- Returns:
- the primeQ
getPrimeExponentP
public BigInteger getPrimeExponentP()
Returns the primeExponentP.- Returns:
- the primeExponentP
getPrimeExponentQ
public BigInteger getPrimeExponentQ()
Returns the primeExponentQ.- Returns:
- the primeExponentQ
getCrtCoefficient
public BigInteger getCrtCoefficient()
Returns the crtCoefficient.- Returns:
- the crtCoefficient
-
Submit a bug or feature
For further API reference and developer documentation, see Java SE Documentation. That documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and working code examples.
Copyright © 1993, 2022, Oracle and/or its affiliates. All rights reserved. Use is subject to license terms. Also see the documentation redistribution policy.